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1 Introduction

The modern image reconstruction landscape contains various approaches that achieve dif-
ferent compromises between reconstruction performance, speed, transparency, and versatil-
ity /generalization:

e Data-driven learning methods achieve excellent performance on certain image quality
metrics in typical cases, although can be black-box, data-hungry, and computation-

intensive to train, and prone to hallucination,! resolution-loss,? and versatility concerns.3

e Principle-based regularization techniques also perform relatively well and can be more
transparent with broader applicability /versatility, but can require computationally-
expensive iterative algorithms.*="

e Scan-specific local-interpolation techniques like GRAPPA® are fast and simple, al-
though provide limited transparency and frequently-lower performance.

In this work, we introduce a novel technique that uses transparent scan-specific assump-
tions to achieve a favorable balance between performance, versatility, and computational
complexity. Our approach uses a multichannel generalization of weighted Hilbert space
interpolation,” which allows us to impose prior information about the multichannel en-
ergy distribution and interchannel energy- and phase-correlations. The approach can be
viewed from the perspective of Reproducing Kernel Hilbert Spaces (RKHSs),!® which en-
ables computationally-simple GRAPPA-like k-space interpolation, but with better perfor-
mance and more transparency.



2 Theory

Consider an ideal continuous k-space signal fy(k), ¢ =1,..., L, acquired using an L-channel
array-coil (f(k) € C¥ in vector notation), with noisy multichannel k-space measurements
d,, € CF, m=1,..., M, made at sampling locations k,,.

We propose to reconstruct continuous k-space from its samples by solving a minimum-
norm reconstruction problem in a weighted Hilbert space:

£(k) —argmmZHf )= dul+ A [ [ 800" W g(x)ax

where the first term encourages data-consistency and the second term corresponds to the
weighted Hilbert space norm. Here, g(x) is the L-channel image obtained via inverse Fourier
transform of f(k), A is a regularization parameter, and W(x) is a spatially-varying matrix
function that defines the weighted Hilbert space, and captures the image behavior that we
wish to promote. In the single-channel case,” W(x) embodies assumptions about the ex-
pected spatial-energy distribution of g(x), with larger values of g(x) discouraged wherever
W(x) is small. In the multichannel case, the diagonal elements of W (x) reflect the ex-
pected spatial-energy distributions of each channel, while the off-diagonal terms capture the
expected energy- and phase-correlations between each channel pair. (For intuition, it may
help to view W(x) as analogous to a spatially-varying multichannel covariance matrix for
the image energy).

Importantly, this choice of norm imbues the weighted Hilbert space with RKHS structure,'©
with shift-invariant kernel function

Kk, q) = //W(x)ei%(kq)'xdx.

RKHS structure means that, for any fixed k-space sampling pattern, the computation of f (k)
can be reframed as simple linear shift-invariant k-space interpolation (similar to GRAPPA),
where the interpolation weights are simple functions of the kernel and sampling pattern.'®

This approach is computationally simple, and the explicit use of W (x)provides full-
transparency about the constraints we impose.

3 Methods

Experiments were conducted using 96 retrospectively-undersampled 7T5-weighted multichan-
nel brain datasets from the fastMRI database!! (4x uniform-undersampling with 16 central
autocalibration (ACS) lines). Reconstructions were performed using conventional GRAPPAS®,
Residual RAKI' (a recent scan-specific neural-network approach), Autocalibrated LORAKS!
(a relatively-fast iterative regularization-based approach), and our proposed weighted Hilbert
space approach. To mitigate hidden noise problems,'* denoising was used to obtain ground-
truth images.

Our weighted Hilbert Space framework admits different ways of choosing W (x) to impose
different constraints. We present illustrations for two cases that both derive W(x) from the

ACS lines:



¢ GRAPPA-Weights: We estimate the empirical autocorrelation function from ACS
data (similar to GRAPPA calibration®) and obtain W(x) via the Fourier transform.

e LORAKS-Weights: We use the nullspace vectors (corresponding to support and
multichannel-correlation constraints) obtained from the LORAKS autocalibration process

to define W1(x).
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Examples are shown in Figures 1-2.

4 Results

As shown in Figures 3-4, the proposed method (LORAKS-weights) consistently outperformed
conventional GRAPPA in normalized root-mean-squared error (NRMSE) and structural sim-
ilarity (SSIM), even offering comparable performance to Autocalibrated LORAKS (i.e., the
best-performing method in the comparison) but with ~6x faster computation. The proposed
method (LORAKS-weights) also consistently outperformed Residual RAKI (which was ham-
pered by limited ACS) and the proposed method with GRAPPA-weights—not shown due to
space constraints.

Figure 5 shows an example where the quality differences between methods were especially
noticeable, also including computation-time information which demonstrates the speed of the
proposed approach.

5 Conclusion

This work introduced a new weighted Hilbert space framework for reconstructing undersam-
pled MRI data. The approach leverages the structure of RKHSs to perform reconstruction
using transparent scan-specific constraints, offering NRMSE /SSIM performance that is simi-
lar to iterative regularization methods but with the computational simplicity of non-iterative
interpolation, all while relying on simple priors with limited hallucination-risk. Although the
approach was demonstrated for Cartesian imaging with energy-type constraints, it can also
be used to impose other constraints (phase, transform-sparsity, etc.) and is compatible with
non-Cartesian data.
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Figure 1: Representative W(x) corresponding to GRAPPA-weights. (For visualization,
only 6 channels are shown). The (left) magnitude of W(x) represents assumptions about
the (diagonal) energy distribution for each channel and (off-diagonal) cross-channel energy
correlation, while the (right, off-diagonal) phase represents assumptions about cross-channel
phase relationships.



Figure 2: Representative W (x) corresponding to LORAKS-weights.
only 6 channels are shown). The (left) magnitude of W(x) represents assumptions about
the (diagonal) energy distribution for each channel and (off-diagonal) cross-channel energy
correlation, while the (right, off-diagonal) phase represents assumptions about cross-channel
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Figure 3: Scatter plots comparing NRMSE performance between (left) GRAPPA and the
proposed method (LORAKS-weights) and (right) Autocalibrated LORAKS and the proposed
method (LORAKS-weights) across 96 brain images. The proposed method offers improved
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performance when the points lie above the 45° line.
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Figure 4: Scatter plots comparing SSIM performance between (left) GRAPPA and the pro-
posed method (LORAKS-weights) and (right) Autocalibrated LORAKS and the proposed
method (LORAKS-weights) across 96 brain images. The proposed method offers improved
performance when the points lie below the 45° line.
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Figure 5: Illustrative reconstruction results and error maps from a single case, reflecting the
error characteristics and NRMSE /speed performance characteristics described in the text.



