Chin-Cheng Chan

Los Angeles, CA | chinchen@usc.edu | Google Scholar | Personal Website

RESEARCH SUMMARY

My research applies signal processing theory and mathematics to develop rigorous, high-quality, efficient, and trustworthy image reconstruction algorithms for ill-posed inverse problems in computational imaging. Representative works of mine include a novel, computationally efficient image model that addresses a long-standing computational challenge in non-Cartesian Fourier imaging, as well as a novel framework for designing reconstruction methods that balance quality, efficiency, and transparency. Many of the algorithms I developed have a broad impact on both classical and modern machine-learning reconstruction methods and are applicable across multiple imaging modalities.

EDUCATION

University of Southern California, Los Angeles, CA

Aug. 2019 — Present

- Ph.D. in Electrical and Computer Engineering, expected May 2026.
- Research areas: image reconstruction, computational imaging, and MRI.

National Taiwan University, Taipei, Taiwan

Sep. 2014 — Jun. 2018

- B.Sc. in Electrical Engineering.
- Research areas: image processing for camera systems and computer vision.

RESEARCH EXPERIENCE

Biomedical Imaging Group, University of Southern California

Los Angeles, CA

Graduate Research Assistant (Advisor: Prof. Justin P. Haldar)

Aug. 2019 — Present

- A Novel Hilbert-Space Reconstruction Framework for Computational Imaging
 - Developed a novel framework for designing high-quality, efficient, and trustworthy image reconstruction methods using reproducing-kernel Hilbert space theory.
 - Addressed a long-standing trade-off between accuracy, computational efficiency, and transparency.
 - Achieved 6× speedup in MRI reconstruction without loss of image quality.
- Computationally Efficient Image Model for Non-Cartesian Fourier Imaging
 - Proposed a novel image model for non-Cartesian Fourier imaging.
 - Addressed a long-standing computational efficiency challenge in the conventional model used over the past 25 years.
 - Achieved $2\times-4\times$ faster reconstruction compared to the conventional model.
- Resolution Analysis Framework for Modern Reconstruction Algorithms
 - Developed a general resolution analysis framework applicable to arbitrary image reconstruction algorithms.
 - Tackled the emerging challenge of evaluating resolution in reconstructions generated by data-driven and advanced nonlinear methods.
 - Showed that commonly used image-quality metrics may not reliably reflect image resolution.
- Novel Beamforming Technique for Cartesian MRI
 - Proposed an enhanced beamforming technique tailored for Cartesian MRI acquisitions.
 - Mitigated the fundamental trade-off between scan time and reconstruction time in MRI.
 - Enabled 50× faster image reconstruction for highly accelerated real-time MRI compared to conventional methods.

Multimedia Processing and Communications Lab, National Taiwan University

Taipei, Taiwan

Undergraduate Research Assistant (Advisor: Homer Chen)

Aug. 2015 — Jun. 2019

- Deep Learning for Optical Coherence Tomography (OCT) Image Analysis
 - Developed a deep learning method for delineating the dermis-epidermis junction and reduced segmentation error by 40%.
- Improving the Reliability of Phase-Detection Autofocus
 - Proposed autofocus techniques using statistics, reinforcement learning, and deep learning, achieving 1.7× speedup.

- Blood Vessel Detection for Optical Coherence Tomography
 - Proposed a short-time robust PCA algorithm that improved the classification performance by 20%.

PEER-REVIEWED PUBLICATIONS

Preprint/Under Review

- 1. C.-C. Chan, J. P. Haldar, "Constrained MRI using weighted Hilbert spaces: Fast scan-specific reconstruction with transparent assumptions", 2025. (Conference abstract under review). [Link]
- 2. **C.-C. Chan**, J. P. Haldar, "A new k-space model for non-Cartesian Fourier imaging", *arXiv:2505.05647*, 2025. (Under review). [Link]

Journal publications

- 1. R. Lobos, **C.-C. Chan**, J. P. Haldar, "New theory and faster computations for subspace-based sensitivity map estimation in multichannel MRI", *IEEE Trans. Med. Imag.*, vol. 43, pp. 1–10, 2023. [Link]
- 2. S.-T. Tsai, C.-H. Liu, C.-C. Chan, Y.-H. Li, S.-L. Huang, H. H. Chen, "H&E-like staining of OCT images of human skin via generative adversarial network", *Appl. Phys. Lett.*, vol. 121, pp. 134102, 2022. [Link]
- 3. C.-C. Chan, J. P. Haldar, "Local perturbation responses and checkerboard test: A tool for characterizing advanced nonlinear algorithms for inverse problems in MR", *Magn. Reson. Med.*, vol. 86, pp. 1873–1887, 2021. [Link]
- 4. C.-J. Ho, M. Calderon-Delgado, C.-C. Chan, M.-Y. Lin, J.-W. Tjiu, S.-L. Huang, H. H. Chen, "Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning", *J. Biophotonics*, vol. 14, 2021. [Link]
- 5. C.-J. Ho, **C.-C. Chan**, H. H. Chen, "AF-Net: A convolutional neural network approach to phase detection autofocus", *IEEE Trans. Image Process.*, vol. 29, pp. 6386–6395, 2020. [Link]
- 6. **C.-C. Chan**, H. H. Chen, "Modeling phase shift data of phase-detection autofocus by skew-normal distribution", *J. Electron. Imaging*, vol. 28, 2019. [Link]
- 7. P.-H. Lee, C.-C. Chan, S.-L. Huang, A. Chen, H. H. Chen, "Extracting blood vessels from full-field OCT data of human skin by short-time RPCA", *IEEE Trans. Med. Imag.*, vol. 37, pp. 1899-1909, 2018. [Link]

Conference publications

- 1. C.-C. Chan, J. P. Haldar, "A novel k-space model for non-Cartesian reconstruction", in *Proc. Int. Soc. Magn. Reson. Med.*, 2025, p. 1366. (Magna Cum Laude Award). [Link]
- 2. C.-C. Chan, D. Kara, D. Kwon, E. Roselli, C. Nguyen, J. P. Haldar, "ROVir enables substantially easier real-time imaging of small regions of interest", in *Proc. Int. Soc. Magn. Reson. Med.*, 2025, p. 2622. [Link]
- 3. C.-C. Chan, J. P. Haldar, "Rethinking model-based non-Cartesian Fourier imaging: A new k-space model", in *Proc. IEEE Int. Symp. Biomed. Imag.*, 2025. [Link]
- 4. **C.-C. Chan**, C. Nguyen, J. P. Haldar, "Improved region-optimized virtual coils for Cartesian acquisition geometries", in *Proc. Int. Soc. Magn. Reson. Med.*, 2024, p. 1905. [Link]
- 5. C.-C. Chan, J. P. Haldar, "Measuring spatiotemporal resolution in real-time MRI", in *Proc. Int. Soc. Magn. Reson. Med.*, 2024, p. 1875. [Link]
- 6. C.-C. Chan, J. Wang, T. Nadeem, J. P. Haldar, "On reference-based image quality assessment in medical image reconstruction: Potential pitfalls and possible solutions", in *Proc. Asilomar*, 2023, pp. 36–39. (Invited paper). [Link]
- 7. R. Lobos, C.-C. Chan, J. P. Haldar, "New theory and faster computations for subspace-based sensitivity map estimation", in *Proc. Int. Soc. Magn. Reson. Med.*, 2023, p. 4625. [Link]
- 8. C.-C. Chan, J. P. Haldar, "Local perturbation responses: A tool for understanding the characteristics of advanced nonlinear MR reconstruction algorithms", in *Proc. Int. Soc. Magn. Reson. Med.*, 2020, p. 684. (Power pitch presentation). [Link]
- 9. **C.-C. Chan**, H. H. Chen, "Autofocus by deep reinforcement learning", in *Proc. Electron. Imaging*, 2019, pp. 577-581. [Link]
- 10. **C.-C. Chan**, H. H. Chen, "Improving the reliability of phase detection autofocus", in *Proc. Electron. Imaging*, 2018, pp. 1-5. [Link]
- 11. **C.-C. Chan**, S.-K. Huang, H. H. Chen, "Enhancement of phase detection for autofocus", in *Proc. IEEE Int. Conf. Image Process.*, 2017, pp. 41-45. [Link]
- 12. P.-H. Lee, C.-C. Chan, S.-L. Huang, A. Chen, H. H. Chen, "Blood vessel extraction from OCT data by short-time RPCA", in *Proc. IEEE Int. Conf. Image Process.*, 2016, pp. 394-398. [Link]

AWARDS

Ming Hsieh Institute Scholar
Magna Cum Laude Award at ISMRM 2025.
Educational stipends for ISMRM 2024 and 2025.
Jan. 2024 and Jan. 2025

TEACHING AND MENTORING EXPERIENCE

Peer Mentor, University of Southern California

• Mentored a junior PhD lab member on research projects.

Teaching Assistant, University of Southern California

• EE-483: Graduate-level Digital Signal Processing.

• EE-503: Graduate-level Engineering Probability.

• PHYS-152L: Lab section for Physics II.

Los Angeles, CA

Jul. 2025 — Present

Los Angeles, CA

Fall 2022, Fall 2023

Fall 2021, Spring 2022, Spring 2024

Fall 2024